การ์ทเนอร์คาดการณ์ว่าในอีกสองปีข้างหน้า (พ.ศ. 2570) องค์กรต่าง ๆ จะนำโมเดล AI ขนาดเล็กเฉพาะงานมาใช้ โดยมีปริมาณการใช้งานมากกว่าโมเดลภาษาขนาดใหญ่ที่ใช้โดยทั่วไป หรือ LLMs อย่างน้อยสามเท่า
โมเดลภาษาขนาดใหญ่ทั่วไปแม้จะมีความสามารถด้านภาษาที่แข็งแกร่ง แต่กลับมีความแม่นยำในการตอบสนองลดลงเมื่อต้องทำงานที่ต้องการบริบทเฉพาะทางธุรกิจ
Sumit Agarwal รองประธานนักวิเคราะห์การ์ทเนอร์ กล่าวว่า "ความหลากหลายของงานในกระบวนการทางธุรกิจและความต้องการความแม่นยำที่มากขึ้นกำลังผลักดันให้เกิดการเปลี่ยนแปลงไปสู่การใช้โมเดลเฉพาะทางที่ได้รับการปรับแต่งสำหรับฟังก์ชันเฉพาะหรือข้อมูลในโดเมนนั้น ๆ โดยโมเดล AI ขนาดเล็กเฉพาะงานเหล่านี้ให้การตอบสนองที่เร็วกว่าและใช้พลังการประมวลผลน้อยกว่า ช่วยลดต้นทุนในการดำเนินงานและการบำรุงรักษา"
องค์กรสามารถปรับแต่งโมเดล LLMs สำหรับงานเฉพาะได้ โดยใช้เทคนิค Retrieval-Augmented Generation (RAG) หรือ Fine-Tuning เพื่อสร้างโมเดลเฉพาะทาง ในกระบวนการนี้ ข้อมูลขององค์กรจะเป็นตัวแปรสำคัญที่สร้างความแตกต่าง จำเป็นต้องมีการเตรียม ตรวจสอบคุณภาพ กำหนดเวอร์ชัน และการจัดการข้อมูลโดยรวม เพื่อให้มั่นใจว่าข้อมูลที่เกี่ยวข้องได้รับการจัดโครงสร้างมาอย่างเหมาะสมเพื่อตอบสนองความต้องการในการ Fine-Tuning ซึ่งเป็นกระบวนการปรับแต่งโมเดล AI ด้วยข้อมูลเฉพาะด้าน
"เมื่อองค์กรตระหนักถึงคุณค่าของข้อมูลส่วนตัวและข้อมูลเชิงลึกที่ได้จากกระบวนการเฉพาะทางมากขึ้น พวกเขาก็มีแนวโน้มที่จะเริ่มสร้างรายได้จากโมเดลของตนและเสนอการเข้าถึงทรัพยากรเหล่านี้ให้กับกลุ่มเป้าหมายที่กว้างขึ้น รวมถึงลูกค้าและแม้แต่คู่แข่ง เป็นการเปลี่ยนจากแนวทางการป้องกันไปสู่การใช้ข้อมูลและความรู้ที่เปิดกว้างผ่านการร่วมมือกันมากขึ้น" Agarwal กล่าวเพิ่มเติม
จากการทำให้โมเดลเป็นกรรมสิทธิ์เชิงพาณิชย์ องค์กรจะสามารถสร้างแหล่งรายได้ใหม่พร้อมกับส่งเสริมระบบนิเวศที่เชื่อมโยงถึงกันมากขึ้น
การนำโมเดล AI ขนาดเล็กเฉพาะงานไปใช้
องค์กรที่ต้องการนำโมเดล AI ขนาดเล็กเฉพาะงานไปใช้ ควรพิจารณาคำแนะนำดังต่อไปนี้:
· ทดลองใช้โมเดลที่มีบริบทเฉพาะ (Pilot Contextualized Models): นำโมเดล AI ขนาดเล็กที่มีบริบทเฉพาะไปใช้ในพื้นที่ที่บริบททางธุรกิจมีความสำคัญหรือในที่ที่ LLMs ไม่สามารถตอบสนองความคาดหวังด้านคุณภาพหรือความเร็วได้
· ใช้แนวทางแบบผสมผสาน (Adopt Composite Approaches): ระบุยูสเคสการใช้งานที่โมเดลเดียวไม่เพียงพอ และเปลี่ยนมาใช้แนวทางแบบผสมผสานที่เกี่ยวข้องกับหลายโมเดลและมีขั้นตอนของเวิร์กโฟลว์
· เสริมสร้างข้อมูลและทักษะ (Strengthen Data and Skills): ให้ความสำคัญกับการเตรียมข้อมูลเพื่อรวบรวม คัดสรร และจัดระเบียบข้อมูลที่จำเป็นสำหรับการ Fine-Tuning โมเดลภาษา ในขณะเดียวกัน ลงทุนพัฒนาทักษะบุคลากรในกลุ่มทางเทคนิคและในกลุ่มงานต่าง ๆ อาทิ สถาปนิก AI และข้อมูล นักวิทยาศาสตร์ข้อมูล วิศวกร AI และข้อมูล ทีมงานด้านความเสี่ยงและการปฏิบัติตามกฎระเบียบ ทีมจัดซื้อ และผู้เชี่ยวชาญในสาขาธุรกิจ เพื่อขับเคลื่อนแนวคิดริเริ่มนี้ได้อย่างมีประสิทธิภาพ
เกี่ยวกับการ์ทเนอร์
บริษัท การ์ทเนอร์ (Gartner, Inc.) (NYSE: IT) คือบริษัทวิจัยและให้คำปรึกษาชั้นนำของโลก มอบข้อมูลเชิงลึก คำแนะนำ และเครื่องมือต่าง ๆ แก่ผู้บริหารองค์กรธุรกิจ เพื่อรองรับการดำเนินภารกิจสำคัญที่มีอยู่ในปัจจุบันและสร้างองค์กรให้ประสบความสำเร็จในอนาคต ดูข้อมูลเพิ่มเติมเกี่ยวกับแนวทางของการ์ทเนอร์ในการช่วยให้ผู้บริหารตัดสินใจอย่างถูกต้องเพื่อขับเคลื่อนอนาคตของธุรกิจได้ที่ gartner.com